DIMENSIONS OF THE FAILURE ZONE IN THE FAILURE
OF A GAS CAVITY IN A SATURATED
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One of the main problems arising in studying the action of an underground explosion is determining the
gizes of the failure zones. For explosions in a dry porous or monolithic medium, this problem has been in-
vestigated quite thoroughly and numerical as well as analytical resuits, connecting the dimensions of the
failure zone with the characteristics of the medium and the parameters of the explosion, have been obtained
(see, e.g., [1, 2]). Atthe same time, the action of an explosion of porous rock saturated with a liquid has been studied
in less detail.

In the present work, we examine an underground explosion in saturated brittle-fracturable rock and esti-
-mate the dimensions of the failure zones formed.

Model of the Medium, Sedimentary rock (.g., sandstone) consists of solid grains cemented together,
the porous space between which can be filled with a liquid or gas. In studying the deformation of such rock,
it is convenient to introduce an effective stress [3], which with a spherically symmetrical explosive motion
and point contacts between grains has the form

o] = (1 —m) (0, + p), 0§ = (1 —m) (0 + p),

where o, and o, are the radial and azimuthal stresses in the framework; p {s the pressure of the interstitial
liquid; m is the porosity.

As is well known, the effective stresses constitute that part of the stresses in the framework that is
transmitted along the contacts between grains. And, since failure in the medium and plastic flow of the pul-~
verized material also occur along the contacts between grains, according to Tertsag's principle, the criteria
for failure and plastic flow, written for the effective stresses, have the same form as in unsaturated rock {3, 4].
The validity of such an assuniption is supported by the experimental work [5-8]. The condition for the appear-
ance of a zone with numerous radial cracks (R zone) in this case is written in the form

0} = 0, (1)
while the criterion for shear failure (splitting) [9] is
|6} — o] | = 0, - 3k.o”, @

where ¢! =~ (o{, +20f )/3 is the effective pressure; og and kS are coefficlents. The condition for plastic flow in
the crushed zone {(C Zone) is

|6} — o] = 3ko’, 3)

where k is the coefficient of friction of the crushed material. The loss of strength by the medium in the azi-
muthal direction in the R zone is characterized by the absence of any transmission of energy in the frame~
work along the contact in this direction, which is written in the form

ol =0, @)
In addition, we will assume that at the time of the explosion there is no drainage. Then, in regions where
the volume deformation occurs elastically, it is possible to establish a relation between the change in inter-
stitial pressure with the change in pressure in the framework. According to Bishop's model [10],

dp c— (1 —m)eg

o T mep+c—{(t—mje '
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where ¢, cg, and Cp are, respectively, the compressibility of the framework, the solid material of the grains,
and the liquid, If we limit ourselves to the case

¢ — (1 —m), € mey 4 ¢ — (1 — meg,

then dp/do « 1, the effect of the change in the interstitial pressure can be neglected, and it may be assumed
that p =counst.

Thus, in examing the problem of an explosion we will assume that in the elastic deformation zone (E
zone) and in the R zone, where the volume deformation is elastic, the pressure remains constant. The problem
is more complicated in the C zone, where a plastic change in the volume is possible under shear, dilatancy
[11]. In order to describe the C zone, we will examine two llmiting cases: 1) dilatancy is absent, volume
deformations are elastic, and p= const; 2) dilatancy loosening leads to a large increase in the pore volume,
and the pressure of the liquid in this case drops to zero (p=0).

Equation of Wavefree Dynamics in the Absence of Dilatancy. Let us first consider the case when there
is no dilatancy in the C zone and p = const everywhere outside the cavity and throughout the duration of the
explosion. In this case, from the equation of continuity in the approximation of wavefree dynamics (density
p =const) [1, 2] it follows that the velocity distribution is v () =da’/r?, where a ¢t) is the radius of the cavity,
a=da/dt. Substituting v (r) into the equation of motion, we obtain an equation for the effective stresses

1 d ;7 4 24 2 60{ 2(‘7{—0.fp
p[-;ﬂﬁ(rw)——*,_a ]'-“-Ta;”r"——_—‘- FEE ©)

similar to the equation for a dry medium,

From Eq. (5), using criteria 3) and (4) and Hooke's law in the convective form for differential stresses
in the E zone [1]* ' _
=t =26(22 1), ©)
where G is the shear modulus for the framework, we obtain the stress distribution in each of the zones. By
requiring that the failure criteria (1) and (2) be satisfied on approaching the corresponding zone from thelarge
r side and that the conditions of continuity of - at the zone boundaries be satisfied, we obtain the camouflet
equations determining the radii of the failure zones

3_ 3 : .y
i . @ — g 1t d aAuz
dy —2 e (162 — =
o T Po & 3[)3 +p [ by A0 (ad®) 203 0,
f on2 ( 4. i f B .
a 2a [ a 1 a a d .,
G~ (Pa 1’)734’9[4—“3 \;4—'",,?)“1‘:—;; (7“;3)77;@”")] =0, (7
12 a®—a? a42¢2(02 —-bz) (bg—1 4 -
Gy + Opy — — 26 ————2 0 — 10 Ltaar) | =
0 F O 0 2G % +p T T (2a*) | =0,

where pf: =(1 - m}pg — p) isthe effective background pressure; pe is the background pressure in the frame-
work; a, is the starting radius of the cavity; b and b, are the radii of the C and R zone boundaries, respec-
tively; p, is the pressure in the cavity; g8 =6k/(1 +2k); og =O‘S/ (1 —kg).

If the R zone is absent, then the camouflet equations have the form

ad

o, -+ 3k,pl — 2G

—ad . 472 '
0 X 1 d 3 a’a
B3 - 3"39[ " dt (aa®) — 2 ] =0,
(8y
— a3

4 aP , a® o a® aP 1 a ) a - .
Po=(pa—p) 5 + 46 3b3"+"[2<4—m (ﬁ'b?‘4'b?)"1——3(57—?)%(““2)]20'

*In the general case, in order to describe the deformations of saturated media the generalized Hooke's law
[12] or the effective stresses in Biot's form [5] should be used. However, in order to simplify in the present
work, we will limit ourselves to using the effective stresses in Tertsagi's form, since it is this particular
form that best determines the limiting state of the medium [3-5] and, therefore, the dimensions of the fallure
zones,
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It is evident from (7) and (8) that the nonzero pressure of the saturating liquid leads, in comparison fo
dry rock { =0}, to a decrease in the effective background pressure p, and partial neutralization of the pressure
in the cavity. Assuming that ¢ =0 and eliminating @ from the system of equations (7) or (8), we find a relation
between the maximum dimensions of the failure zone by, byy and the maximum dimension of the cavity. If
p=1(cf = gﬁfw) 121, (Pe— P)am/bm K 04, and {In(b,,/a,) — 11b,/bym < 4, then

. 8Ga? a (20, + 3p]) b :
by e By = % by, @=In-~2
om = 3 (.’.Go T I’c) 40y o %on ©)
or, in the absence of an R zoue,
26 (1 + 2k : {
by — Z )z, 10)

8

Here by, /am increases with kg due to the effect of inertia, which predominates over the decrease in bm/'am
due to the increase in strength ~og + 3kspfc.

If we set @ =0 and & =0, then we obtain the equilibrium quasistatic dimensions of the failure zone bye, by
and the cavity ag

B -t
264} 20,43, o e 2| 1)
by = - plw bl loge e pip |t oy a1
v (s +) % o B Po 3{o,+ 1) 83, )

or, in the abgence of an R zone,

2Ga° a3v Wl s, 2 —t
- S AL LR R 12)
8 st'c [

In obtaining (11) and (12), it was assumed that the gas in the cavity expands adiabatically with an adiabatic
index y:=p, =Py /&)¥Y , where p, is the initial pressure in the cavity.

Taking into Account Dilatancy in the Crushed Zone. In taking into account the loosening up due to
dilatancy in the crushed zone, we will assume that the pressure of the liquid is p=0. This assumption is
justified by the fact that the change in the pore volume with dilatancy can be large and the liquid pressure
in this case drops rapidly to zero.

With a constant dilatancy vate A in the approximation of elastic incompressibility of the medium, the
velocity has the following form as a function of radius [2]:

o () = f(}a"/r" a<r<<h,
' laa"s*="fr2, r>u,

where n= 2—A)/ (1 +A). Knowing v(r), from the equations of motion taking into account Egs. (1)~ 4} and (6) and
the conditions of continuity of the radial stresses I';, = (1 —m)op — mp, we find the camouflet equations

f 208(1) |, ey den PRIV B E
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9

If the R zone is absent, then

b 2 211

6GS RLAUN B — 2n 2 ‘
o, - 3k ,,( __’_IT._+ _-‘__[_r_ﬁ_(anbg na)_“ﬂ__i] =0,
i

i n 468 e, f ah n(24-p—m o't
) - P Pu—g e - plad | e S D= P
P Pe— Doy p{“ {3(5“'2"’) B R (14)
n (L4 n)aP/pb 1 " ('_’~_i-ﬂ wn oaml ab/pP o s ea') =0
+rrEw | TrE T e TR @ =0
/

243



From the system of equations (13) and (14), it is possible to obtain the equilibrium quasistatic dimension
of the failure zones. Thus, from (13) with ¢ =0 and & =0, it follows that

f 2
Pa [} ﬂ{;v

h’“‘ = D 1 b?l’" = (1 5)

Ta 20,1 3,'){}

If it is assumed that the asymptotic relation 2GS = (g, +pf )b} following from the first equation of the system
(13) is valid, beginning with the dimensions of the cavity and the C zone a4, by such that ag>>a, and bg >y,
then in addition to (15) we obtain the relation

/g 3.7
pott ( 20,1+ 3I}c)
p T =

. %a

wlw

26 L |
ay , (16)
3 (00 - pé)

which leads to the equilibrium cavity size
f

“2"’ r, [ 3 (00 -I- pg) l‘ge J 1T

@V Oyt 26 13

In the case that the R zone is absent, it follows from (14) with ¢ =0 and @ =0 that

B
a0 & (o, sl
¢ T g skl & [2 on S\ 1 71
5T Iglg 0 5 (Us -+ 3]‘-8110) -+ p+ Pe

a7)

Statistical Estimate of the Size of the Mainline .Crackin the Elastic Zone. In the elastic zone, there is
no failure, but it is possible for individual mainline eracks to appear. I is well known from experiment that
several cracks appear in the elastic zone, but for estimates we will assume that there is only one disk-shaped
radial crack beginning at the boundary of the failure zone. Its size in the static approximation can be found
from the theory of cracks [3], using the relation

i i
—_— f
i (o (r)dr
kYL :“;SMVTG*’

where | is the radius of the crack; R is the boundary of the failure zone (b; or b); K is the critical coefficient
for the stress intensity.

If the E zone is next to a R zone, then R =b, and the size of the mainline crack is determined by the equation

T L ;. O+ Pl
K / — e ! [
l/ Thy (L~ 1) Pe J AT (a8)

where L=]/R. For rocks, K< 102 kgf/cm3/2 (e.g., for limestone K=20-40 kgf/cm®/2[14]) and witho ~ 10! bar,
by~ 10% m the coupling term can be neglected [15] over a wide range of values of L and it is possible to use
the approximate formula

L? =1+ a,/pk. (19)

In the case that the R zone is absent, the size of the crack is found from the equation

[ o, - E}/csp{3

L
Kl//-m——”‘l’c‘l’ 32 (20)
or
L* =k, + o,/3p}. 21)

Itisclear that the mainline crack in this case isabsent for og< 3p£ (1—kg). The relative size of the crack L, as
follows from (19), (21), depends weakly on the size of the failure zone. In addition, one should note that since
the horizontal stress in the layer is usually less than the vertical stress [15] and is more easily compensated
by the interstitial pressure, it is easier for the vertical crack to appear. '

The dependence of L as a function of p for an explosion in rock with parameters m =0.1, kg =0.23, og =
40 bar, pe =250 bar (curve 1) and m =0.1, kg =0.33, 05 =100 bar, pe =600 bar (curve 2) is shown in Fig. 1.
The crack forms with p > 0.9p, (curve 1) and p > 0.7p; (curve 2) and its size increasesrapidly withincreas-

ing p.
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0,6 08 p/Pe

Fig. 1

For pap,, the size of the crack found from the static equations (18)-(21) turns out to be anomalously
large. In this connection, it should be noted that in reality there are phenomena that impede and stop the
growth of cracks. For example, these include simultaneous appearance of several cracks, cessation of growth
as a result of interaction with defects in the medium, the finite rate of filtration of the liquid into the crack.

Discussion, Based on the equations obtained for the dimensions of the failure zones and the length of the
mainline crack, we will examine qualitatively the effect of the saturating liquid on explosion-induced failure.
First of all, the interstitial fluid has an effect through its pressure. The pressure enters into the asymptotic
equations 9)~(12), (15)-(17) for b, by and Egs. (18)-(21) for L primarily through the effective pressure p",
and its effect consists in compensating the background pressure of the framework. In accordance with @)-(12),
(15)-(21) this leads to large failure zone dimensions and a long mainline crack in comparison with an explo-
sion in dry rock, where p=0. Thus, an underground explosion at some depth with a background pressure in
the framework of p, and interstitial pressure p is in some sense equivalent to an explosion at a smaller depth
with background pressure p, —pandzero interstitial pressure.

The growth of the failure zone with an explosion. in saturated rock in comparison to an explosion in dry
rock with other conditions remaining the same can be significant. Indeed, the strength constants of rocks can
be oy, 0g ~10! bar, kg ~1/3[2, 9], and the lithostatic pressure at depths of about a kilometer constitute Pe™ 102
bar. For this reason, with an explosion in dry rock, the dimensions of the failure zone are determined by the
background pressure. If, on the other hand, the explosion occurs in saturated rock, when p, to a large extent
is compensated by the pressure of the liquid in the layer (=~ p.), then the dimensions of the failure zones will
already be determined by the strength characteristics of the medium gy, o4 and can increase strongly, if oy,

03 pg. In this case, the length of the mainline crack can increase to an even greater extent [ see (18)-(21)
and Fig. 1].

Let us consider the possibility of such compensation of the background pressure of the framework by

“the pressure of the fluid in the layer. If it is assumed that p coincides with the hydrostatic pressure ppgh
{p is the density of the fluid, h is the depth at which the layer is located, g is the acceleration of gravity),
then p ~p,/3 for pp=1¢g/ cm® and medium density of p =2.5-3 g/em?®. Tn this case there will be no noticeable
compensation of the background pressure and the effect of p will be small. However, it is necessary to take
into account the following two circumstances, which actually can lead to greater compensation. As experience
shows, the interstitial pressure can exceed the hydrostatic pressure [16] and, in some cases, even the back-
ground pressure of the rock [17]. In addition, if the vertical pressure in the framework coincides with the
lithostatic pressure pgh, then the horizontal pressure can be less [15] and, therefore, it is more easily com-
pensated. It should be noted that such stress anisotropy in the framework creates favorable conditions for
growth of the failure zone in the horizontal direction and of mainline cracks in the vertical direction.

Another effect that also leads to a growth of failure zone is the decrease in the strength of the rock when
it is saturated with liquid. T turns out that in this case op and 04 can decrease by tens of percent [18, 19],
This, apparently, is related to the interaction of the saturating fluid and the framework, leading to a decrease
in the surface failure energy. It is possible that as p Increases this interaction will increase and the strength
constants will decrease even further.

Let us find the condition for applicability of wavefree dynamics. In solving the problem of an explosion
in the wavefree approximation, dissipative energy losses at the shock-wave front are not taken into account.

o
[
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These losses can be estimated by considering the shock wave as a weak, i.e., using the adiabatic equation of
state for cold compression in the relation of the pressure ¢ and specific volume of the medium V at the wave
front [20]: .

o=A(Ve/V'—1), A, i=const.

Then, the specific energy dissipated at the wave front ¢he pressure of the medium in front of the wave is not
taken into account) [20] is
-
Ae =30 (Vy—V)~ (oav,
\4

If it is assumed that the compression in the wave is low AV =V,~V«V;, then
Ae = (1 + i)V,e26®/12,

where c=1/Ai is the compressibility of the medium, The total loss of energy on heating in the shock wave as
it moves from the initial radius of the cavity is

L4

o,
ET=1‘—(—1—'%-I—)—°-—S'c”r2dr.

%
Let the intensity of the shock wave decrease as a power of the distance as o = poao‘s/ r0. Then

Ep=n(1+1)cpld/9(5—1),

i.e., the losses to dissipation are greater for media with greater compressibility. This, in particular, supports
the numerical results of the work in [21]: In a water-saturated medium, the dimension of the plasticity zone

is greater than in a gas-saturated medium. The authors of [21] relate this phenomenon to the smaller com-
pressibility of the water-saturated medium (in comparison with the unsaturated medium), leading to a lower
dissipation on the shock-wave front.

The energy of the explosion E, is determined by the initial energy of the gas in the cavity Ey=4ma’p,/
3(1/""1). For applicability of the wavefree approximation, it is necessary that Ep <« E; or

- 126 —1) 92
O STk )

Thus, for 6=2, i =4, y=1.5 Eq. (22) gives p} « 10¢~2%,

The results obtained indicate the possibility of a strong effect of the saturating liquid on the dimensions
of the fallure zone and the appearance of the mainline cracks. This can lead to the formation of a large zone
with increased permeability with a camouflet explosion in saturated medium as compared to an explosion in
dry rock. .

However, it should be noted that a complete and consistent theory of failure in a saturated medium (s~
pecially the formation of mainline cracks) must take into account the appearance of flltration of the interstitial
fluid. For this reason, the approach used in the present work, naturally, Is only approximate.

The author is grateful to E. E. Lovetgkii and V. S. Fetisov for their attention to the work and for useful
discussions, as well as V. G. Grigor'ev and B. M. Tulinov for useful suggestions.
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